量子相变简介

作者:陈越   编辑:张燕    时间:2024-06-07    点击数:

撰文|陈越(理论物理研究所2023届博士生毕业生;导师:陈晓松教授;研究方向:统计物理与复杂系统)

量子多体系统的相变在自然形成的系统(如凝聚态)和通过冷原子气体产生的人造系统中吸引了大量的理论和实验研究[1-14]。相变是当系统的一个参数(序参量)通过某一个特殊值(相变点)时系统状态发生的根本变化。相变点两侧的状态以不同类型的序为特征,通常是从对称或无序状态(包含哈密顿量的某种对称性)到对称性破缺或有序态(不具有该对称性),尽管哈密顿量仍然拥有这种对称性。

经典(热力学)相变是有限温度下的相变,是粒子的热运动和相互作用彼此竞争的结果。对于系统的稳定相,自由能取极小值,而自由能由系统的内能与代表无序度的熵在给定温度下抗衡的结果决定。例如,水的自由能曲线与冰的自由能曲线在0°C(在一个标准大气压下)时相交,0°C就是水的冰点,高温下水的自由能低,低温时冰的自由能低,所以水在高温下呈液态,在低温下呈固态。那么,在绝对零度下,系统还会发生相变吗?按照经典物理的看法,零温时没有熵,因此不应该再有相变,例如水中的分子都处在能量最低的位置不动,构成一种冰,只有唯一的相。然而事实并非如此。微观粒子的运动实质上并不遵循经典的牛顿力学,而应该由量子力学描述。经典相变可以完全由热力学描述,并不需要用到量子力学,但在零温时发生的相变则需要量子力学描述。按照量子力学中的不确定性原理,微观粒子的位置和动量不能同时测定。因此,在绝对零度,粒子仍然不会停下运动,还有所谓的“零点能”,这种零点能导致量子涨落,就像热运动导致热涨落。所以,在绝对零度时粒子的动能和势能的竞争会导致不同相的存在以及它们之间的相变。与有限温度下经典的热力学相变不同,这里起作用的不是热涨落,而是量子涨落。量子涨落会造成体系从有序到无序的转变。

在非零温时,能量尺度为的热涨落与能量尺度为的量子涨落互相竞争,这里为量子谐振子的特征频率,其反比于关联时间。在量子临界区域,即的区域,量子涨落主导体系的行为,在非传统的物理行为如新奇的非费米液体相中会出现这种量子临界行为。从理论角度看,量子相变会将有序相和无序相(通常低温无序相被称为量子无序相)分开。在温度足够高时,体系是无序的且纯经典的。实验上,由量子涨落主宰的量子临界相是最有趣的一种现象。

有人可能认为,根据热力学第三定律,绝对零度是不可能达到的,因此讨论这种绝度零度下的相变没有实际意义,其实不然。与经典临界现象类似,量子临界现象也由一些普遍的规律描述,在很多时候,系统在非零温下的性质是由量子相变点决定的。

与经典相变不同,量子相变只能通过改变零温时的物理参数(如磁场或压强)来实现。在零温时平衡态系统总是处于其最低能量态(如果最低能量是简并的,则处于简并态同等权重的叠加态)。量子相变描述的是多体系统的基态由于量子涨落发生的突变,可以是二级相变。量子相变发生在量子临界点,此时量子涨落驱动关联长度发散。

拓扑费米子凝聚量子相变是一个例子。在三维费米液体的情况下,这种相变将费米面转变成费米体。这样的相变可以是一级相变,因为它将费米面这种二维结构转变成三维的。其结果是,费米液体的拓扑电荷突变,因为它只能取离散值。另一个例子是光阱中稀薄原子的“超流-绝缘体”相变。1995年用激光冷却、磁俘获和蒸发冷却的方法实现了稀薄的铷原子气体的玻色-爱因斯坦凝聚。最早的实验是把气体分子俘获在一个势阱中,实现凝聚。有人用激光驻波的方法形成一个势阱和势垒的点阵。当温度降到几十个纳开尔文( 10-9K)时产生玻色-爱因斯坦凝聚,从逃逸气体分子的速度分布在原点附近可以观察到一个很尖锐的峰,同时还有一些卫星峰,反应周期性的势垒。这说明分子可以在势垒中移动(隧道效应),因为这些卫星峰是衍射造成的。如果把势垒提高,当超过一定阈值后,中心的峰和卫星峰都消失了,变成了模糊的一片。这说明粒子不能在势垒中移动,被“局域化”了。前一种状态被称为“超流”态,而后一种状态被称为“绝缘体”态。这里的“超流-绝缘体”相变是量子相变,因为其是量子涨落引起的,而不是热涨落。

量子力学建立起来后发展出的固体能带论解释了为什么有些金属是导体,而有些金属是绝缘体。后来的研究发现有些材料按能带论应该是金属,而实际却是绝缘体。进一步的研究表明,这与电子间的库仑排斥有关,简单的单个粒子运动的图像不可描述,这类材料被称为“莫特绝缘体”。研究这种绝缘体在掺杂和加压等条件下变为导体的相变是个热门课题,它与有广泛应用前景的高温超导体的研究有关。有人认为,冷原子的玻色-爱因斯坦凝聚研究为解决这个难题提供了新的途径:用实验手段直接调控这种相变。

除了以上提到的凝聚态体系中的量子相变,在光与物质相互作用体系中也会出现量子相变。传统的量子相变通常考虑多粒子系统在热力学极限下的相变,这要求微观粒子的数量趋于无穷,如Dicke模型[15]。然而,最近的理论研究表明,即使系统仅包含一个原子,当原子跃迁频率与空腔场频率之比趋于无穷大时,可能会发生二阶量子相变,如量子Rabi 模型[16, 17]。最近,在Paul 陷阱中使用进行的俘获离子实验观察到了这种量子相变,这为无需热力学极限的量子相变的可控研究打开了一个新窗口[18]

量子Rabi 模型描述了光子场与二能级原子系统之间的相互作用,是研究光-物质相互作用最简单的模型之一,其起源于80 多年前的半经典模型。那时,Rabi 引入了一个模型来讨论快速变化的弱磁场对具有核自旋的定向原子的影响[19, 20]。最简单的情况对应于两量子态系统。原子的运动用量子力学描述,场被视为经典旋转场。Bloch 和Siegert 后来讨论了非旋转交变场的影响[21],他们发现了共振位置的偏移——现在称为Bloch-Siegert 偏移。在驱动超导量子比特的实验中已经观察到这种偏移[22]

Jaynes 和Cummings 在1963 年引入了一个类似的量子模型,描述了一个与光腔的量子化模式相互作用的二能级原子[23]。他们最初的目标是研究辐射的量子理论与相应的半经典理论之间的关系。尽管它很简单,但量子Rabi 模型在当时并不被认为是精确可解的。为了求解这个模型,采用了旋转波近似。在这种称为Jaynes–Cummings(JC)模型的近似中,反向旋转项被忽略,结果证明这是与许多实验相关的近共振和弱耦合参数区域的有效近似。JC 模型很容易求解,并已非常成功地应用于理解一系列实验现象,例如真空Rabi 模式分裂[24]和量子Rabi 振荡[25]

在工程量子系统的重要实验发展中,所有相关系统参数都是可调的,从而可以达到新的量子耦合区域。这些系统包括耦合到微波波导谐振器[26-29]、LC 谐振器[30-32]和机械谐振器[33-35]的超导量子比特。特别是,可以达到超强耦合区域。此外,在飞秒激光写入的波导超晶格中,已经实现了深度强耦合状态下量子Rabi 模型的经典模拟器[36]。另外,已经报道了在超强耦合状态和更强的耦合状态下的超导量子比特谐振器电路的结果[37, 38]。在这种耦合区域中,通常的旋转波近似不再有效,反向旋转项也不容忽视。JC 模型失效的直接证据已被报道[26]。人们已经提出了各种方法来解决强耦合区域的问题,包括后来被称为广义旋转波近似的方法[39-45],用于获得量子Rabi 模型的本征谱的连续近似。基于此,人们预测了反向旋转项引起的一些有趣现象[46-52]

在另一个方面的发展中,Braak 在2011年发现量子Rabi 模型是精确可解的。Braak 在解析函数的Bargmann–Fock 空间中给出了量子Rabi 模型的精确解,导出了确定能谱的条件[53, 54]。随后,其他研究者通过Bogoliubov 变换重现了这个条件[55]。进一步发现,量子Rabi 模型的解析解可以用合流Heun 函数给出[56, 57],其中出现著名的Judd 孤立精确解[58]作为定义合流Heun 函数的无限级数的截断。Braak 对量子Rabi 模型的解析解引导了对量子Rabi 模型各种已知推广模型的完整本征谱的解决方案浪潮。

现在,随着探测强[59, 60]、超强[26, 31, 61]和深强[27,28]耦合区域的快速实验进展,量子Rabi 模型备受关注[40, 42, 46, 53, 55, 56, 62-78],它在量子光学[23]、凝聚态物理学[79]和量子信息[80]中起着重要作用。人们需要获得其量子相变的性质。虽然量子Rabi 模型的解析解已经得出,但它不是闭合形式的,不能直接应用于量子相变的研究,因此通常采用近似解析(如微扰论)和数值方法研究量子相变。对于单模腔场的量子Rabi模型,Hwang等人在2015年发现其存在从正常相到超辐射相的二阶相变,并研究了其临界行为和动力学[16]。Shen等人在2021年提出了只涉及量子化电场与原子自旋一个分量的相互作用的双模量子Rabi 模型哈密顿量,其基态相图与单模量子Rabi模型一致,只是临界点不同[82]。Chen等人在2023年研究了同时包含量子化电场与原子自旋一个分量的相互作用以及量子化磁场与另一个自旋分量的相互作用的双模量子Rabi哈密顿量[95],发现其基态相图包含四个相:正常相、电超辐射相、磁超辐射相和电磁超辐射相,四个相的交汇点是四重临界点。从正常相到电超辐射相和磁超辐相的相变是二阶的,序参量为平均光子数,并且这种相变打破了离散空间反射不变性。从电超辐射相到磁超辐射相的相变是一阶的。如果集体的原子-光子耦合强度参数相等,则存在连续幺正变换不变性。这种连续幺正变换不变性在电磁超辐射相中失效,因为该相是无限简并的。在激发能谱中,存在三条临界线,其中激发能变为零并且出现Nambu-Goldstone 模式。激发能和光子数的临界指数与单模量子Rabi 模型相同[95]

除了两能级的模型之外,双模腔场与三能级系统之间的相互作用导致许多重要现象,例如电磁感应透明[83]和暗态[84],这些现象在相干量子态的捕获和转移的精确控制中是有利的[85]。三能级系统(常称为“qutrit”)在量子信息中也很重要。与二能级方案相比,基于qutrits 的量子密钥分发更能抵抗攻击[86, 87],使用qutrits 的量子计算速度更快,错误率更低[88, 89]。人们已经提出了具有俘获离子的qutrit 量子计算机[90]。此外,三能级系统用于构建量子热机[91, 92]。识别双模模型中可能涉及的量子相和量子相变有助于进一步理解这些光-物质相互作用模型并扩展其应用。热力学极限下的两模三能级相互作用模型备受关注。Hayn 等人通过广义Holstein-Primakoff变换研究了量子相变,并揭示它表现出两个超辐射量子相变,可以是一阶的,也可以是二阶的[93]。Cordero 等人发现,多色基态相图可以通过变分分析划分为单色区域[94]。Zhang 等人报告了两模三能级量子Rabi 模型的基态相图、标度函数和临界指数的解析计算[8]。发现了量子Rabi 模型中的量子相变和临界现象之后,研究者对Rabi 和Dicke 模型的标度行为的进一步研究表明这两个模型属于同一个普适类。这些进展为不在热力学极限下的量子相变带来了新的认识。

不管是凝聚态系统还是量子光学系统,其中的量子相变的研究使人们对自然界的突变现象有了深入的认识。随着理论和实验的进展,人们一定会发现量子多体系统中关于相变的更为本质的规律。

参考文献

[1] Fink J M, Dombi A, Vukics A, et al. Observation of the photon-blockade breakdown phase transition. Physical Review X, 2017, 7(1): 011012. DOI: 10.1103/PhysRevX.7.011012.

[2] Sun Z H, Cai J Q, Tang Q C, et al. Out-of-time-order correlators and quantum phase transitions in the Rabi and Dicke models. Annalen der Physik, 2020, 532(4): 1900270. DOI:10.1002/andp.201900270.

[3] Casteels W, Fazio R, Ciuti C. Critical dynamical properties of a first-order dissipative phase transition. Physical Review A, 2017, 95(1): 012128. DOI: 10.1103/PhysRevA.95.012128.

[4] Zhu H J, Xu K, Zhang G F, et al. Finite-component multicriticality at the superradiant quantum phase transition. Physical Review Letters, 2020, 125(5): 050402. DOI:10.1103/PhysRevLett.125.050402.

[5] Garbe L, Bina M, Keller A, et al. Critical quantum metrology with a finite-component quantum phase transition. Physical Review Letters, 2020, 124(12): 120504. DOI:10.1103/PhysRevLett.124.120504.

[6] Puebla R, Smirne A, Huelga S F, et al. Universal Anti-Kibble-Zurek scaling in fully connected systems. Physical Review Letters, 2020, 124(23): 230602. DOI: 10.1103/PhysRevLett.124.230602.

[7] Chen X Y, Zhang Y Y, Fu L, et al. Generalized coherent-squeezed-state expansion for the super-radiant phase transition. Physical Review A, 2020, 101(3): 033827. DOI:10.1103/PhysRevA.101.033827.

[8] Zhang Y, Mao B B, Xu D, et al. Quantum phase transitions and critical behaviors in the two-mode three-level quantum Rabi model. Journal of Physics A: Mathematical and Theoretical, 2020, 53(31): 315302. DOI: 10.1088/1751-8121/ab92be.

[9] Forn-Díaz P, Lamata L, Rico E, et al. Ultrastrong coupling regimes of light-matter interaction. Reviews of Modern Physics, 2019, 91(2): 025005. DOI: 10.1103/RevModPhys.91.025005.

[10] Zhu C J, Ping L L, Yang Y P, et al. Squeezed light induced symmetry breaking superradiant phase transition. Physical Review Letters, 2020, 124(7): 073602. DOI: 10.1103/PhysRevLett.124.073602.

[11] Wang Y Z, He S, Duan L, et al. Quantum tricritical point emerging in the spin-boson model with two dissipative spins in staggered biases. Physical Review B, 2021, 103(20):205106. DOI: 10.1103/PhysRevB.103.205106.

[12] Leppäkangas J, Braumüller J, Hauck M, et al. Quantum simulation of the spin-boson model with a microwave circuit. Physical Review A, 2018, 97(5): 052321. DOI: 10.1103/PhysRevA.97.052321.

[13] Abdi M. Dynamical quantum phase transition in Bose-Einstein condensates. Physical Review B, 2019, 100(18): 184310. DOI: 10.1103/PhysRevB.100.184310.

[14] Garbe L, Egusquiza I L, Solano E, et al. Superradiant phase transition in the ultrastrongcoupling regime of the two-photon Dicke model. Physical Review A, 2017, 95(5):053854. DOI: 10.1103/PhysRevA.95.053854.

[15] Emary C, Brandes T. Quantum chaos triggered by precursors of a quantum phase transition: The Dicke model. Physical Review Letters, 2003, 90(4): 044101. DOI: 10.1103/PhysRevLett.90.044101.

[16] Hwang M J, Puebla R, Plenio M B. Quantum phase transition and universal dynamics in the Rabi model. Physical Review Letters, 2015, 115(18): 180404. DOI: 10.1103/PhysRevLett.115.180404.

[17] Xie Q, Zhong H, Batchelor M T, et al. The quantum Rabi model: Solution and dynamics. Journal of Physics A: Mathematical and Theoretical, 2017, 50(11): 113001. DOI:10.1088/1751-8121/aa5a65.

[18] Cai M L, Liu Z D, Zhao W D, et al. Observation of a quantum phase transition in the quantum Rabi model with a single trapped ion. Nature Communications, 2021, 12(1): 1-8. DOI:10.1038/s41467-021-21425-8.

[19] Rabi I I. On the process of space quantization. Physical Review, 1936, 49(4): 324-328. DOI: 10.1103/PhysRev.49.324.

[20] Rabi I I. Space quantization in a gyrating magnetic field. Physical Review, 1937, 51 (8): 652-654. DOI: 10.1103/PhysRev.51.652.

[21] Bloch F, Siegert A. Magnetic resonance for nonrotating fields. Physical Review, 1940, 57(6): 522-527. DOI: 10.1103/PhysRev.57.522.

[22] Tuorila J, Silveri M, Sillanpää M, et al. Stark effect and generalized Bloch-Siegert shift in a strongly driven two-level system. Physical Review Letters, 2010, 105(25): 257003. DOI: 10.1103/PhysRevLett.105.257003.

[23] Jaynes E, Cummings F. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE, 1963, 51(1): 89-109. DOI:10.1109/PROC.1963.1664.

[24] Thompson R J, Rempe G, Kimble H J. Observation of normal-mode splitting for an atom in an optical cavity. Physical Review Letters, 1992, 68(8): 1132-1135. DOI: 10.1103/PhysRevLett.68.1132.

[25] Brune M, Schmidt-Kaler F, Maali A, et al. Quantum Rabi oscillation: A direct test of field quantization in a cavity. Physical Review Letters, 1996, 76(11): 1800-1803. DOI:10.1103/PhysRevLett.76.1800.

[26] Niemczyk T, Deppe F, Huebl H, et al. Circuit quantum electrodynamics in the ultrastrong coupling regime. Nature Physics, 2010, 6(10): 772-776. DOI: 10.1038/nphys1730.

[27] Fink J M, Göppl M, Baur M, et al. Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system. Nature, 2008, 454(7202): 315-318. DOI:10.1038/nature07112.

[28] Bourassa J, Gambetta J M, Abdumalikov A A, et al. Ultrastrong coupling regime of cavity QED with phase-biased flux qubits. Physical Review A, 2009, 80(3): 032109. DOI:10.1103/PhysRevA.80.032109.

[29] Abdumalikov A A, Astafiev O, Nakamura Y, et al. Vacuum Rabi splitting due to strong coupling of a flux qubit and a coplanar-waveguide resonator. Physical Review B, 2008, 78(18): 180502. DOI: 10.1103/PhysRevB.78.180502.

[30] Johansson J, Saito S, Meno T, et al. Vacuum Rabi oscillations in a macroscopic superconducting qubit LC oscillator system. Physical Review Letters, 2006, 96(12): 127006. DOI: 10.1103/PhysRevLett.96.127006.

[31] Forn-Díaz P, Lisenfeld J, Marcos D, et al. Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Physical Review Letters, 2010, 105(23): 237001. DOI: 10.1103/PhysRevLett.105.237001.

[32] Fedorov A, Feofanov A K, Macha P, et al. Strong coupling of a quantum oscillator to a flux qubit at its symmetry point. Physical Review Letters, 2010, 105(6): 060503. DOI:10.1103/PhysRevLett.105.060503.

[33] Pirkkalainen J M, Cho S U, Li J, et al. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature, 2013, 494(7436): 211-215. DOI: 10.1038/nature11821.

[34] O’Connell A D, Hofheinz M, Ansmann M, et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature, 2010, 464(7289): 697-703. DOI: 10.1038/nature08967.

[35] LaHaye M D, Suh J, Echternach P M, et al. Nanomechanical measurements of a superconducting qubit. Nature, 2009, 459(7249): 960-964. DOI: 10.1038/nature08093.

[36] Crespi A, Longhi S, Osellame R. Photonic realization of the quantum Rabi model. Physical Review Letters, 2012, 108(16): 163601. DOI: 10.1103/PhysRevLett.108.163601.

[37] Yoshihara F, Fuse T, Ashhab S, et al. Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime. Nature Physics, 2017, 13(1): 44-47. DOI: 10.1038/nphys3906.

[38] Forn-Díaz P, García-Ripoll J J, Peropadre B, et al. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nature Physics, 2017, 13(1): 39-43. DOI: 10.1038/nphys3905.

[39] Feranchuk I D, Komarov L I, Ulyanenkov A P. Two-level system in a one-mode quantum field: Numerical solution on the basis of the operator method. Journal of Physics A: Mathematical and General, 1996, 29(14): 4035. DOI: 10.1088/0305-4470/29/14/026.

[40] Irish E K. Generalized rotating-wave approximation for arbitrarily large coupling. Physical Review Letters, 2007, 99(17): 173601. DOI: 10.1103/PhysRevLett.99.173601.

[41] Albert V V, Scholes G D, Brumer P. Symmetric rotating-wave approximation for the generalized single-mode spin-boson system. Physical Review A, 2011, 84(4): 042110. DOI: 10.1103/PhysRevA.84.042110.

[42] Yu L, Zhu S, Liang Q, et al. Analytical solutions for the Rabi model. Physical Review A, 2012, 86(1): 015803. DOI: 10.1103/PhysRevA.86.015803.

[43] Zhang Y Y, Chen Q H, Zhao Y. Generalized rotating-wave approximation to biased qubit-oscillator systems. Physical Review A, 2013, 87(3): 033827. DOI: 10.1103/PhysRevA.87.033827.

[44] Zhang Y Y, Chen Q H. Generalized rotating-wave approximation for the two-qubit quantum Rabi model. Physical Review A, 2015, 91(1): 013814. DOI: 10.1103/PhysRevA.91.013814.

[45] Zhang Y Y, Chen X Y, He S, et al. Analytical solutions and genuine multipartite entanglement of the three-qubit Dicke model. Physical Review A, 2016, 94(1): 012317. DOI:10.1103/PhysRevA.94.012317.

[46] Casanova J, Romero G, Lizuain I, et al. Deep strong coupling regime of the Jaynes-Cummings model. Physical Review Letters, 2010, 105(26): 263603. DOI: 10.1103/PhysRevLett.105.263603.

[47] Wolf F A, Kollar M, Braak D. Exact real-time dynamics of the quantum Rabi model. Physical Review A, 2012, 85(5): 053817. DOI: 10.1103/PhysRevA.85.053817.

[48] Wolf F A, Vallone F, Romero G, et al. Dynamical correlation functions and the quantum Rabi model. Physical Review A, 2013, 87(2): 023835. DOI: 10.1103/PhysRevA.87.023835.

[49] Zhang Y Y, Chen Q H, Zhu S Y. Vacuum Rabi splitting and dynamics of the Jaynes-Cummings model for arbitrary coupling. Chinese Physics Letters, 2013, 30(11):114203. DOI: 10.1088/0256-307X/30/11/114203.

[50] He S, Zhao Y, Chen Q H. Absence of collapse in quantum Rabi oscillations. Physical Review A, 2014, 90(5): 053848. DOI: 10.1103/PhysRevA.90.053848.

[51] Garziano L, Stassi R, Macrì V, et al. Multiphoton quantum Rabi oscillations in ultrastrong cavity QED. Physical Review A, 2015, 92(6): 063830. DOI: 10.1103/PhysRevA.92.063830.

[52] Garziano L, Macrì V, Stassi R, et al. One photon can simultaneously excite two or more atoms. Physical Review Letters, 2016, 117(4): 043601. DOI: 10.1103/PhysRevLett.117.043601.

[53] Braak D. Integrability of the Rabi model. Physical Review Letters, 2011, 107(10):

100401. DOI: 10.1103/PhysRevLett.107.100401.

[54] Braak D. A generalized G-function for the quantum Rabi model. Annalen der Physik, 2013, 525(3): L23-L28. DOI: 10.1002/andp.201200270.

[55] Chen Q H, Wang C, He S, et al. Exact solvability of the quantum Rabi model using Bogoliubov operators. Physical Review A, 2012, 86(2): 023822. DOI: 10.1103/PhysRevA.86.023822.

[56] Zhong H, Xie Q, Batchelor M T, et al. Analytical eigenstates for the quantum Rabi model. Journal of Physics A: Mathematical and Theoretical, 2013, 46(41): 415302. DOI:10.1088/1751-8113/46/41/415302.

[57] Maciejewski A J, Przybylska M, Stachowiak T. Full spectrum of the Rabi model.

Physics Letters A, 2014, 378(1): 16-20. DOI: 10.1016/j.physleta.2013.10.032.

[58] Judd B R. Exact solutions to a class of Jahn-Teller systems. Journal of Physics C: Solid State Physics, 1979, 12(9): 1685. DOI: 10.1088/0022-3719/12/9/010.

[59] Blais A, Huang R S, Wallraff A, et al. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Physical Review A, 2004, 69(6): 062320. DOI: 10.1103/PhysRevA.69.062320.

[60] Wallraff A, Schuster D I, Blais A, et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 2004, 431(7005): 162-167. DOI: 10.1038/nature02851.

[61] Chen Z, Wang Y, Li T, et al. Single-photon-driven high-order sideband transitions in an ultrastrongly coupled circuit-quantum-electrodynamics system. Physical Review A, 2017, 96(1): 012325. DOI: 10.1103/PhysRevA.96.012325.

[62] Irish E K. Erratum: Generalized rotating-wave approximation for arbitrarily large coupling. Physical Review Letters, 2007, 99(25): 259901. DOI: 10.1103/PhysRevLett.99.259901.

[63] Xie Q T, Cui S, Cao J P, et al. Anisotropic Rabi model. Physical Review X, 2014, 4 (2): 021046. DOI: 10.1103/PhysRevX.4.021046.

[64] Ying Z J, Liu M, Luo H G, et al. Ground-state phase diagram of the quantum Rabi model. Physical Review A, 2015, 92(5): 053823. DOI: 10.1103/PhysRevA.92.053823.

[65] Gan C J, Zheng H. Dynamics of a two-level system coupled to a quantum oscillator: Transformed rotating-wave approximation. The European Physical Journal D, 2010, 59(3): 473-478. DOI: 10.1140/epjd/e2010-00182-8.

[66] Larson J. Absence of vacuum induced berry phases without the rotating wave approximation in cavity QED. Physical Review Letters, 2012, 108(3): 033601. DOI:

10.1103/PhysRevLett.108.033601.

[67] Ashhab S. Superradiance transition in a system with a single qubit and a single oscillator. Physical Review A, 2013, 87(1): 013826. DOI: 10.1103/PhysRevA.87.013826.

[68] De Liberato S. Light-matter decoupling in the deep strong coupling regime: The breakdown of the Purcell effect. Physical Review Letters, 2014, 112(1): 016401. DOI: 10.1103/PhysRevLett.112.016401.

[69] Liu M, Ying Z J, An J H, et al. Mean photon number dependent variational method to the Rabi model. New Journal of Physics, 2015, 17(4): 043001. DOI: 10.1088/1367-2630/17/4/043001.

[70] Cong L, Sun X M, Liu M, et al. Frequency-renormalized multipolaron expansion for the quantum Rabi model. Physical Review A, 2017, 95(6): 063803. DOI: 10.1103/PhysRevA.95.063803.

[71] Wang Y, You W L, Liu M, et al. Quantum criticality and state engineering in the simulated anisotropic quantum Rabi model. New Journal of Physics, 2018, 20(5): 053061. DOI:10.1088/1367-2630/aac5b5.

[72] Mao B B, Li L, Wang Y, et al. Variational generalized rotating-wave approximation in the two-qubit quantum Rabi model. Physical Review A, 2019, 99(3): 033834. DOI:10.1103/PhysRevA.99.033834.

[73] Mahmoodian S. Chiral light-matter interaction beyond the rotating-wave approximation. Physical Review Letters, 2019, 123(13): 133603. DOI: 10.1103/PhysRevLett.123.133603.

[74] Kockum A F, Miranowicz A, De Liberato S, et al. Publisher correction: Ultrastrong coupling between light and matter. Nature Reviews Physics, 2019, 1(4): 295-295. DOI: 10.1038/s42254-019-0046-2.

[75] Forn-Díaz P, Lamata L, Rico E, et al. Ultrastrong coupling regimes of light-matter interaction. Reviews of Modern Physics, 2019, 91(2): 025005. DOI: 10.1103/RevModPhys.91.025005.

[76] Xie W, Mao B B, Li G, et al. Squeezing based analytical variational method for the biased quantum Rabi model in the ultrastrong coupling regime. Journal of Physics A: Mathematical and Theoretical, 2020, 53(9): 095302. DOI: 10.1088/1751-8121/ab4b7a.

[77] Le Boité A. Theoretical methods for ultrastrong light–matter interactions. Advanced Quantum Technologies, 2020, 3(7): 1900140. DOI: 10.1002/qute.201900140.

[78] Frisk Kockum A, Miranowicz A, De Liberato S, et al. Ultrastrong coupling between light and matter. Nature Reviews Physics, 2019, 1(1): 19-40. DOI: 10.1038/s42254-018-0006-2.

[79] Holstein T. Studies of polaron motion: Part I. The molecular-crystal model. Annals of Physics, 1959, 8(3): 325-342. DOI: 10.1016/0003-4916(59)90002-8.

[80] Raimond J M, Brune M, Haroche S. Manipulating quantum entanglement with atoms and photons in a cavity. Reviews of Modern Physics, 2001, 73(3): 565-582. DOI: 10.1103/RevModPhys.73.565.

[81] Liu M, Chesi S, Ying Z J, et al. Universal scaling and critical exponents of the anisotropic quantum Rabi model. Physical Review Letters, 2017, 119(22): 220601. DOI: 10.1103/PhysRevLett.119.220601.

[82] Shen L T, Yang J W, Zhong Z R, et al. Quantum phase transition and quench dynamics in the two-mode Rabi model. Physical Review A, 2021, 104(6): 063703. DOI: 10.1103/PhysRevA.104.063703.

[83] Boller K J, Imamoğlu A, Harris S E. Observation of electromagnetically induced transparency. Physical Review Letters, 1991, 66(20): 2593-2596. DOI: 10.1103/PhysRevLett.66.2593.

[84] Fleischhauer M, Lukin M D. Dark-state polaritons in electromagnetically induced transparency. Physical Review Letters, 2000, 84(22): 5094-5097. DOI: 10.1103/PhysRevLett.84.5094.

[85] Bergmann K, Theuer H, Shore B W. Coherent population transfer among quantum states of atoms and molecules. Reviews of Modern Physics, 1998, 70(3): 1003-1025. DOI:10.1103/RevModPhys.70.1003.

[86] Bruß D, Macchiavello C. Optimal eavesdropping in cryptography with three-dimensional quantum states. Physical Review Letters, 2002, 88(12): 127901. DOI: 10.1103/PhysRevLett.88.127901.

[87] Cerf N J, Bourennane M, Karlsson A, et al. Security of quantum key distribution using 𝑑-level systems. Physical Review Letters, 2002, 88(12): 127902. DOI: 10.1103/PhysRevLett. 88.127902.

[88] Zhou Z, Chu S I, Han S. Quantum computing with superconducting devices: A three-level SQUID qubit. Physical Review B, 2002, 66(5): 054527. DOI: 10.1103/PhysRevB.66.054527.

[89] Sjöqvist E, Tong D M, Andersson L M, et al. Non-adiabatic holonomic quantum computation. New Journal of Physics, 2012, 14(10): 103035. DOI: 10.1088/1367-2630/14/10/103035.

[90] Klimov A B, Guzmán R, Retamal J C, et al. Qutrit quantum computer with trapped ions. Physical Review A, 2003, 67(6): 062313. DOI: 10.1103/PhysRevA.67.062313.

[91] Geva E, Kosloff R. The quantum heat engine and heat pump: An irreversible thermodynamic analysis of the three-level amplifier. The Journal of Chemical Physics, 1996, 104(19):7681-7699. DOI: 10.1063/1.471453.

[92] Xu D, Wang C, Zhao Y, et al. Polaron effects on the performance of light-harvesting systems: A quantum heat engine perspective. New Journal of Physics, 2016, 18(2): 023003. DOI: 10.1088/1367-2630/18/2/023003.

[93] Hayn M, Emary C, Brandes T. Phase transitions and dark-state physics in two-color superradiance. Physical Review A, 2011, 84(5): 053856. DOI: 10.1103/PhysRevA.84.053856.

[94] Cordero S, Nahmad-Achar E, López-Peña R, et al. Polychromatic phase diagram for 𝑛-level atoms interacting with ℓ modes of an electromagnetic field. Physical Review A, 2015, 92(5): 053843. DOI: 10.1103/PhysRevA.92.053843.

[95] Chen, Y., Liu, M. & Chen, X. Ground-state phase diagram, symmetries, excitation spectra and finite-frequency scaling of the two-mode quantum Rabi model. Chinese Phys. B 32, 104213 (2023). DOI: 10.1088/1674-1056/acea66.

Copyright@许昌学院数学与统计学院 版权所有 旧版回顾

 地址:河南省许昌市八一路88号 联系电话:0374-2968958 邮编:461000

您是到访的第